Skip to contents

Multiscale GWR

Usage

gwr_multiscale(
  formula,
  data,
  config = list(mgwr_config()),
  criterion = c("CVR", "dCVR"),
  optim_bw_range = c(0, Inf),
  hatmatrix = T,
  retry_times = 5,
  max_iterations = 2000,
  parallel_method = c("no", "omp"),
  parallel_arg = c(0),
  verbose = FALSE
)

# S3 method for gwrmultiscalem
plot(x, y, ..., columns)

# S3 method for gwrmultiscalem
coef(object, ...)

# S3 method for gwrmultiscalem
fitted(object, ...)

# S3 method for gwrmultiscalem
residuals(object, ...)

Arguments

formula

Regresison model.

data

A sf objects.

config

Parameter-specified weighting configuration. It must be a list of MGWRConfig objects. Please find more details in the details section.

criterion

Convergence criterion of back-fitting algorithm.

optim_bw_range

Bounds on bandwidth optimization, a vector of two numeric elements. Set to NA_real_ to enable default values selected by the algorithm.

hatmatrix

If TRUE, great circle will be caculated.

retry_times

The number times of continually optimizing each parameter-specific bandwidth even though it meets the criterion of convergence, for avoiding sub-optimal choice due to illusion of convergence.

max_iterations

Maximum number of iterations in the back-fitting procedure.

parallel_method

Parallel method.

parallel_arg

Parallel method argument.

verbose

Output information level. Can be either FALSE or integer values. Higher values will leads to more output information.

x

A "gwrmultiscalem" object.

y

Ignored.

...

Additional arguments passing to residuals().

columns

Column names to plot. If it is missing or non-character value, all coefficient columns are plottd.

object

A "gwrmultiscalem" object.

Value

A gwrmultiscalem object.

Details

Configuration specification

In the multiscale GWR model, spatial weighting parameters can be specified for each parameter. There are several ways to make it easy and flexible. No matter in which way, the config parameter needs to be a list of MGWRConfig elements.

When the config list is not named, its length needs to be either 1 or the number of independent variables (including the intercept if any). For the config of length 1, its only value will be applied for every independent variable. For the config that as long as independent variables, its values are mapped to variables by position. In other cases, an error will occur to prevent further process.

When the config list is named, the names can contain independent-variable names or a special character ".default". The function will look up config for each parameter according to its name in the config list. If ".default" can be found in the list, once names of some parameters are missing in the config, the function will use the value of name ".default" instead. However, if not all names can be found in config and the ".default" name is missing, an error will occur to prevent further process.

Functions

  • plot(gwrmultiscalem): Plot the result of basic GWR model.

  • coef(gwrmultiscalem): Get coefficients of a multiscale GWR model.

  • fitted(gwrmultiscalem): Get fitted values of a basic GWR model.

  • residuals(gwrmultiscalem): Get residuals of a basic GWR model.

Examples

data(LondonHP)
gwr_multiscale(
 formula = PURCHASE ~ FLOORSZ + UNEMPLOY + PROF,
 data = LondonHP
)
#> Multiscale Geographically Weighted Regression Model
#> ===================================================
#>   Formula: PURCHASE ~ FLOORSZ + UNEMPLOY + PROF
#>      Data: LondonHP
#> 
#> 
#> Parameter-specified Weighting Configuration
#> -------------------------------------------
#>                  bw   unit type   kernel longlat p theta optim_bw criterion
#> Intercept  3758.992 Meters Null gaussian   FALSE 2     0     TRUE       AIC
#> FLOORSZ    1684.743 Meters Null gaussian   FALSE 2     0     TRUE       AIC
#> UNEMPLOY  45226.177 Meters Null gaussian   FALSE 2     0     TRUE       AIC
#> PROF      13000.959 Meters Null gaussian   FALSE 2     0     TRUE       AIC
#>              threshold centered
#> Intercept 1.000000e-05    FALSE
#> FLOORSZ   1.000000e-05     TRUE
#> UNEMPLOY  1.000000e-05     TRUE
#> PROF      1.000000e-05     TRUE
#> 
#> 
#> Summary of Coefficient Estimates
#> --------------------------------
#>  Coefficient        Min.     1st Qu.      Median     3rd Qu.        Max. 
#>    Intercept  125497.191  132762.279  150831.667  168818.165  190110.170 
#>      FLOORSZ    -184.067     997.289    1506.309    1970.043    3027.671 
#>     UNEMPLOY  310326.670  315433.209  318711.539  320575.312  325930.524 
#>         PROF  222076.169  236767.029  248433.345  258565.543  274402.517 
#> 
#> 
#> Diagnostic Information
#> ----------------------
#>   RSS: 230041770180
#>   ENP: 69.67341
#>   EDF: 246.3266
#>    R2: 0.8715428
#> R2adj: 0.8350606
#>  AICc: 7486.598
#> 
#> 

# Specify more configurations for all variables
m <- gwr_multiscale(
 formula = PURCHASE ~ FLOORSZ + UNEMPLOY + PROF,
 data = LondonHP,
 config = list(mgwr_config(adaptive = TRUE, kernel = "bisquare"))
)
m
#> Multiscale Geographically Weighted Regression Model
#> ===================================================
#>   Formula: PURCHASE ~ FLOORSZ + UNEMPLOY + PROF
#>      Data: LondonHP
#> 
#> 
#> Parameter-specified Weighting Configuration
#> -------------------------------------------
#>            bw unit type   kernel longlat p theta optim_bw criterion
#> Intercept  92   NN Null bisquare   FALSE 2     0     TRUE       AIC
#> FLOORSZ    19   NN Null bisquare   FALSE 2     0     TRUE       AIC
#> UNEMPLOY   51   NN Null bisquare   FALSE 2     0     TRUE       AIC
#> PROF      157   NN Null bisquare   FALSE 2     0     TRUE       AIC
#>              threshold centered
#> Intercept 1.000000e-05    FALSE
#> FLOORSZ   1.000000e-05     TRUE
#> UNEMPLOY  1.000000e-05     TRUE
#> PROF      1.000000e-05     TRUE
#> 
#> 
#> Summary of Coefficient Estimates
#> --------------------------------
#>  Coefficient         Min.     1st Qu.      Median     3rd Qu.         Max. 
#>    Intercept   128027.588  134315.206  147425.383  168778.168   185788.635 
#>      FLOORSZ      -71.171     999.976    1480.660    1938.071     3736.606 
#>     UNEMPLOY  -537304.673  108123.294  611883.562  902220.559  2303154.999 
#>         PROF   163822.997  221234.648  246805.452  300170.581   348794.459 
#> 
#> 
#> Diagnostic Information
#> ----------------------
#>   RSS: 221062803902
#>   ENP: 68.95713
#>   EDF: 247.0429
#>    R2: 0.8765567
#> R2adj: 0.8419599
#>  AICc: 7474.897
#> 
#> 

# Specify more configurations for each variables
gwr_multiscale(
 formula = PURCHASE ~ FLOORSZ + UNEMPLOY + PROF,
 data = LondonHP,
 config = list(
     mgwr_config(adaptive = TRUE, kernel = "bisquare"),
     mgwr_config(adaptive = TRUE, kernel = "bisquare"),
     mgwr_config(adaptive = TRUE, kernel = "bisquare"),
     mgwr_config(adaptive = TRUE, kernel = "bisquare")
 ))
#> Multiscale Geographically Weighted Regression Model
#> ===================================================
#>   Formula: PURCHASE ~ FLOORSZ + UNEMPLOY + PROF
#>      Data: LondonHP
#> 
#> 
#> Parameter-specified Weighting Configuration
#> -------------------------------------------
#>            bw unit type   kernel longlat p theta optim_bw criterion
#> Intercept  92   NN Null bisquare   FALSE 2     0     TRUE       AIC
#> FLOORSZ    19   NN Null bisquare   FALSE 2     0     TRUE       AIC
#> UNEMPLOY   51   NN Null bisquare   FALSE 2     0     TRUE       AIC
#> PROF      157   NN Null bisquare   FALSE 2     0     TRUE       AIC
#>              threshold centered
#> Intercept 1.000000e-05    FALSE
#> FLOORSZ   1.000000e-05     TRUE
#> UNEMPLOY  1.000000e-05     TRUE
#> PROF      1.000000e-05     TRUE
#> 
#> 
#> Summary of Coefficient Estimates
#> --------------------------------
#>  Coefficient         Min.     1st Qu.      Median     3rd Qu.         Max. 
#>    Intercept   128027.588  134315.206  147425.383  168778.168   185788.635 
#>      FLOORSZ      -71.171     999.976    1480.660    1938.071     3736.606 
#>     UNEMPLOY  -537304.673  108123.294  611883.562  902220.559  2303154.999 
#>         PROF   163822.997  221234.648  246805.452  300170.581   348794.459 
#> 
#> 
#> Diagnostic Information
#> ----------------------
#>   RSS: 221062803902
#>   ENP: 68.95713
#>   EDF: 247.0429
#>    R2: 0.8765567
#> R2adj: 0.8419599
#>  AICc: 7474.897
#> 
#> 

# Specify configurations by variable names
gwr_multiscale(
 formula = PURCHASE ~ FLOORSZ + UNEMPLOY + PROF,
 data = LondonHP,
 config = list(
     FLOORSZ = mgwr_config(bw = 20, adaptive = TRUE, kernel = "bisquare"),
     .default = mgwr_config(adaptive = TRUE, kernel = "bisquare")
 ))
#> Multiscale Geographically Weighted Regression Model
#> ===================================================
#>   Formula: PURCHASE ~ FLOORSZ + UNEMPLOY + PROF
#>      Data: LondonHP
#> 
#> 
#> Parameter-specified Weighting Configuration
#> -------------------------------------------
#>            bw unit    type   kernel longlat p theta optim_bw criterion
#> Intercept  92   NN    Null bisquare   FALSE 2     0     TRUE       AIC
#> FLOORSZ    19   NN Initial bisquare   FALSE 2     0     TRUE       AIC
#> UNEMPLOY   51   NN    Null bisquare   FALSE 2     0     TRUE       AIC
#> PROF      157   NN    Null bisquare   FALSE 2     0     TRUE       AIC
#>              threshold centered
#> Intercept 1.000000e-05    FALSE
#> FLOORSZ   1.000000e-05     TRUE
#> UNEMPLOY  1.000000e-05     TRUE
#> PROF      1.000000e-05     TRUE
#> 
#> 
#> Summary of Coefficient Estimates
#> --------------------------------
#>  Coefficient         Min.     1st Qu.      Median     3rd Qu.         Max. 
#>    Intercept   128027.588  134315.206  147425.383  168778.168   185788.635 
#>      FLOORSZ      -71.171     999.976    1480.660    1938.071     3736.606 
#>     UNEMPLOY  -537304.673  108123.294  611883.562  902220.559  2303154.999 
#>         PROF   163822.997  221234.648  246805.452  300170.581   348794.459 
#> 
#> 
#> Diagnostic Information
#> ----------------------
#>   RSS: 221062803902
#>   ENP: 68.95713
#>   EDF: 247.0429
#>    R2: 0.8765567
#> R2adj: 0.8419599
#>  AICc: 7474.897
#> 
#> 

plot(m)


coef(m)
#>     Intercept    FLOORSZ    UNEMPLOY     PROF
#> 0    132661.3  876.79462 -337814.093 186834.2
#> 1    132603.3  872.79592 -361071.642 186230.0
#> 2    132933.1  890.53033 -170970.753 191026.3
#> 3    132935.0  889.11288 -165579.728 191328.2
#> 4    132654.7  872.41309 -335954.503 188238.5
#> 5    130804.1  827.50134 -537108.792 174524.0
#> 6    130819.9  826.18655 -533854.112 174848.1
#> 7    132180.3  834.23736 -466783.520 185163.5
#> 8    130745.0  819.96195 -537304.673 174790.9
#> 9    131537.4  815.81395 -479475.589 180486.0
#> 10   131537.4  815.81395 -479475.589 180486.0
#> 11   131214.4  815.26252 -506704.350 177840.2
#> 12   138534.5 1492.17933  949222.467 222823.6
#> 13   139566.2 1474.64719  953974.390 224232.1
#> 14   139360.2 1477.87042  950460.005 224036.9
#> 15   138379.2 1495.18831  949023.438 222570.8
#> 16   137491.6 1523.85958  949362.126 220753.8
#> 17   137861.2 1509.59126  946817.279 221268.3
#> 18   137685.8 1516.01628  948400.747 221117.9
#> 19   139874.0 1466.84798  950594.866 225156.7
#> 20   137370.0 1530.87449  945914.266 221005.5
#> 21   137205.8 1540.42358  947512.260 220376.7
#> 22   139078.7 1480.52275  944274.256 224142.1
#> 23   137393.5 1530.30600  939529.645 221205.4
#> 24   139330.0 1474.77866  942305.422 224514.1
#> 25   138132.7 1499.95735  939880.739 222283.9
#> 26   139807.5 1462.68059  943485.416 225576.5
#> 27   139589.9 1467.70601  941180.844 225085.3
#> 28   131213.8 2076.11483   45188.174 169920.1
#> 29   131246.9 2064.30569   37881.400 169916.2
#> 30   135303.3  874.17981  759653.784 214162.8
#> 31   131182.1 2085.28432   58683.044 170122.0
#> 32   131220.6 2083.71247   58970.516 169592.3
#> 33   136051.4  908.78070  834885.683 218370.5
#> 34   135897.0  875.78490  806658.940 217939.8
#> 35   134909.4  760.36998  503207.407 211583.3
#> 36   131192.5 2097.53611   72358.774 170040.4
#> 37   135886.3  808.22080  735878.517 217762.4
#> 38   131160.4 2110.60154   86524.144 170514.3
#> 39   131120.1 2112.50252   89693.204 170542.9
#> 40   131199.2 1013.18232 -410780.505 189437.5
#> 41   130970.4  995.46085 -426226.556 188279.1
#> 42   130970.4  995.46085 -426226.556 188279.1
#> 43   130274.1  976.98315 -437132.705 186657.1
#> 44   130618.2  999.97485 -433020.755 187684.8
#> 45   131107.4 2117.94595   98993.431 171113.7
#> 46   131598.2 1025.40347 -365113.904 194171.5
#> 47   130302.2 1014.82109 -426048.716 188398.8
#> 48   130308.8 1635.32854   71978.745 167564.6
#> 49   131158.5 1021.53534 -376287.458 192685.3
#> 50   130713.0 1031.70661 -403017.828 190804.6
#> 51   130713.0 1031.70661 -403017.828 190804.6
#> 52   132024.9 1001.76392 -276432.413 200656.4
#> 53   131180.5 1015.29071 -351264.715 194087.0
#> 54   129901.7 1525.27198   69439.126 168615.9
#> 55   130281.2 1594.69928  119926.527 166285.3
#> 56   141077.7 1673.14265  771521.781 230857.2
#> 57   143356.0 1972.45790  776338.901 233387.3
#> 58   147111.1 2106.72606  717584.685 237711.8
#> 59   143978.7 1979.65789  758299.855 234127.3
#> 60   162078.7 1940.11129  800498.917 256796.5
#> 61   161657.6 1941.34621  797610.831 256472.8
#> 62   161537.8 1943.39624  793530.097 256444.6
#> 63   162177.5 1941.10374  796760.212 257005.5
#> 64   163407.5 1937.56812  802822.160 257891.2
#> 65   161618.0 1944.71608  790354.038 256590.7
#> 66   163613.8 1936.97574  803532.518 258131.1
#> 67   163025.6 1940.15597  799177.825 257645.7
#> 68   162251.2 1941.85841  794324.884 257158.0
#> 69   163495.0 1938.57433  801575.759 258064.6
#> 70   161519.2 1947.93053  785223.811 256586.1
#> 71   163711.7 1940.10607  799176.009 258327.6
#> 72   163003.4 1943.09393  791797.822 257929.9
#> 73   145789.8 2014.35570  592544.362 236960.4
#> 74   164631.5 1936.58602  805476.116 259326.3
#> 75   163056.4 1943.58647  791259.649 258068.5
#> 76   144623.0 1939.95739  574346.807 235709.0
#> 77   147779.2 2066.20581  531365.174 239972.6
#> 78   146834.0 2028.29332  550526.493 238556.4
#> 79   136104.5  647.78510  148704.175 222479.1
#> 80   151347.3 2070.34086  422063.747 245898.2
#> 81   135981.1  881.79311  124792.008 223119.0
#> 82   150085.3 1976.61705  560066.409 244233.3
#> 83   136867.5  999.97618  133265.395 224418.1
#> 84   128027.6  872.07693  669154.669 178128.6
#> 85   129582.1 1095.00340  671852.138 163823.0
#> 86   129547.8 1063.27644  640287.925 165481.3
#> 87   129242.5 1046.63276  750652.843 165753.1
#> 88   129418.0 1025.31390  693845.589 165461.7
#> 89   129236.4 1027.96875  736389.131 165711.7
#> 90   128520.2  834.63267  587063.042 172431.4
#> 91   129551.4  965.17831  612544.719 170036.2
#> 92   129028.4  903.52354  581612.453 166463.1
#> 93   149379.9 1581.53896  590651.718 246406.1
#> 94   129113.6  898.61428  583418.569 166928.9
#> 95   129113.6  898.61428  583418.569 166928.9
#> 96   130269.4 1692.21308  163759.845 200395.8
#> 97   149845.4 1582.50237  599755.642 247744.9
#> 98   129984.3 1329.70095  272438.631 186523.7
#> 99   150409.4 1575.02115  602270.972 248743.5
#> 100  149599.7 1584.59614  597358.582 247204.8
#> 101  150752.8 1570.39049  604231.014 249508.5
#> 102  150139.1 1575.41715  602355.260 248098.4
#> 103  149117.1 1558.40884  570650.248 245729.0
#> 104  130115.6 1625.01094  188419.995 198452.9
#> 105  151291.8 1573.84771  611222.405 250119.2
#> 106  147719.4 1531.67184  497655.860 243144.5
#> 107  130126.4 1610.83386  168009.548 204064.7
#> 108  153182.2 1523.18258  643548.565 253469.5
#> 109  129900.4 1521.71813  263744.443 193998.2
#> 110  130060.9 1598.62578  180438.806 203095.3
#> 111  130070.9 1596.99991  174347.613 204102.6
#> 112  130016.0 1590.32403  181573.120 203978.1
#> 113  179849.6 2141.04457  935804.569 286376.0
#> 114  178933.0 2524.52922  975945.197 281467.0
#> 115  178408.9 2593.23917  988401.338 280593.4
#> 116  178408.9 2593.23917  988401.338 280593.4
#> 117  179024.4 2490.98666  991943.679 281904.3
#> 118  179881.9 2012.09673  921212.616 288775.6
#> 119  179976.8 2119.43161  946965.279 287766.2
#> 120  178981.1 2457.63635 1027383.602 282026.7
#> 121  160840.7 1643.67117  622256.484 269723.7
#> 122  160840.7 1643.67117  622256.484 269723.7
#> 123  162370.0 2004.21501  629844.600 271513.7
#> 124  161786.2 1784.86609  626698.987 271117.1
#> 125  160856.6 1611.11858  631230.317 270408.5
#> 126  179918.2 2382.95228 1035025.797 283860.6
#> 127  179918.2 2382.95228 1035025.797 283860.6
#> 128  163585.4 2776.30757  628092.825 272877.4
#> 129  162995.4 2260.32263  639187.205 273077.0
#> 130  162825.7 1923.75801  643925.119 273589.3
#> 131  162825.7 1923.75801  643925.119 273589.3
#> 132  161909.7 1613.14103  648370.044 273875.1
#> 133  166220.5 3383.00061  633234.270 276643.2
#> 134  163160.8 1735.62551  656803.355 276994.4
#> 135  164856.0 3075.70985  668376.665 277762.2
#> 136  162407.0 1578.76822  663814.976 277466.4
#> 137  164247.1 2136.83145  668774.372 278312.2
#> 138  167226.3 3649.20040  714340.117 280023.7
#> 139  164488.1 2222.48390  672108.612 278860.7
#> 140  162286.7 1548.43672  665054.173 278106.4
#> 141  167262.1 3736.60597  714248.880 281021.8
#> 142  129091.8 1421.65570   68028.075 220276.3
#> 143  137673.1  934.77571  193681.843 241642.6
#> 144  134707.5  861.59018  197651.717 231053.6
#> 145  128878.9 1405.53983   57931.690 220600.4
#> 146  132544.7  810.54161  210757.103 215475.2
#> 147  131281.0  924.56652  213257.414 207671.3
#> 148  138224.0  935.19601  196618.365 243260.8
#> 149  132920.1  783.31127  209133.035 217891.8
#> 150  132675.0  817.40207  210734.674 216692.8
#> 151  128815.7 1400.35203   51382.878 221263.9
#> 152  137933.5  927.58820  197510.270 242322.0
#> 153  132453.6  866.86841  214979.199 216251.6
#> 154  133559.2  790.32856  210729.152 221694.1
#> 155  135182.0  840.60977  204762.656 231269.7
#> 156  135182.0  840.60977  204762.656 231269.7
#> 157  182912.7 1912.73130 1278769.814 296256.5
#> 158  135933.6  865.80800  202975.540 235033.0
#> 159  134005.1  807.56964  211912.021 223183.6
#> 160  133110.7  872.86436  214032.414 219289.8
#> 161  133961.6  831.03713  213142.624 223599.2
#> 162  132549.5  919.39480  217753.299 216247.5
#> 163  183199.4 1873.70232 1268797.836 297406.6
#> 164  135200.3  807.09185  211252.261 231262.7
#> 165  132366.8  941.54906  215400.624 214741.4
#> 166  183868.0 1634.95706 1425396.976 296916.0
#> 167  132513.3  952.36269  212997.968 215427.1
#> 168  128871.8 1037.41838  117253.157 218066.4
#> 169  128733.1 1061.79001   96491.704 218747.9
#> 170  129124.9 1348.35979   37724.023 223577.0
#> 171  184613.2 1819.15099 1516759.450 297711.9
#> 172  129073.5 1018.63065   85378.984 219861.0
#> 173  184950.7 1801.95933 1375391.386 300223.6
#> 174  129252.6 1029.57572   82950.278 220375.5
#> 175  185326.3 2302.94938 1575150.043 300537.9
#> 176  172353.1  527.10551 1006000.389 299367.8
#> 177  173119.0  549.26919 1041399.808 300117.6
#> 178  172712.7  527.06845 1050800.311 300029.4
#> 179  170913.1  351.05469 1094224.259 299549.4
#> 180  170264.5  262.04141 1166868.661 299915.5
#> 181  185726.2 2598.05622 1554600.932 308509.1
#> 182  184377.6 2624.41598 1712845.881 308639.2
#> 183  182143.7 2662.08140 2188695.583 310582.6
#> 184  181735.5 2645.70313 2303154.999 310938.5
#> 185  183869.9 2720.83182 1737836.342 311358.5
#> 186  180699.7 2491.77524 2202382.388 313353.9
#> 187  185284.3 2790.55879 1467910.751 312011.3
#> 188  185284.3 2790.55879 1467910.751 312011.3
#> 189  159497.3  -71.17115  546104.724 290368.4
#> 190  185788.6 2843.27744 1563519.915 313217.7
#> 191  185247.5 2838.97698 1604694.376 313352.4
#> 192  184919.6 2852.91474 1614858.688 313845.3
#> 193  183072.6 2755.60806 1892848.457 314713.5
#> 194  138247.3 1223.96042  200662.875 235686.3
#> 195  171696.1  232.78870 1113459.680 309335.5
#> 196  164454.7 1517.08138  843362.780 299415.7
#> 197  177474.6 1342.71667 1074679.731 313678.4
#> 198  177561.7 1334.47275 1076856.580 313785.9
#> 199  177573.2 1333.68413 1077606.968 313801.7
#> 200  177596.2 1328.99173 1077453.670 313833.7
#> 201  177324.3 1349.97874 1069710.348 314007.6
#> 202  177366.3 1345.22296 1071741.949 314169.5
#> 203  133756.1 1122.08838  -34685.532 232710.2
#> 204  154656.0 1484.45773  574110.961 262718.2
#> 205  136816.5  998.03652   37968.901 235832.1
#> 206  136816.5  998.03652   37968.901 235832.1
#> 207  136100.9 1004.93564   19158.344 235003.7
#> 208  172791.5 1540.95202 1046250.786 332685.2
#> 209  173259.9 1426.89299 1016803.200 334052.7
#> 210  172978.1 1440.01535 1025312.942 333412.5
#> 211  134074.3 1106.82225  -44102.428 233266.3
#> 212  175450.9 1334.83920  902035.911 325616.3
#> 213  172648.6 1433.01780 1016153.406 335083.6
#> 214  136444.8 1007.69152    2323.200 235804.4
#> 215  172325.2 1443.98669 1017384.877 336265.0
#> 216  172601.4 1442.64673  992217.849 336038.7
#> 217  172296.6 1461.54160 1007412.272 336785.5
#> 218  167651.8 2359.72819 1024727.453 302513.4
#> 219  134923.3 1134.16949  -45397.613 234285.3
#> 220  134873.8 1137.62593  -47087.555 234225.9
#> 221  172322.1 1444.87869  991552.714 337078.2
#> 222  134454.9 1114.02786  -51217.122 233775.8
#> 223  174726.6 1631.93779  296669.289 333432.7
#> 224  171927.0 1455.78322  999061.750 338523.2
#> 225  171860.4 1463.81297 1002308.985 338705.1
#> 226  163589.3 2264.73423  979542.135 295184.9
#> 227  174442.4 1481.68762  294329.740 334227.8
#> 228  174965.5 1395.35811  902405.207 326574.1
#> 229  169383.3 2575.61114 1046891.954 311998.7
#> 230  169008.3 2579.63220 1044519.604 312013.1
#> 231  174829.0 1411.84198  898796.493 326937.5
#> 232  168680.1 2579.62358 1043093.604 311171.8
#> 233  163313.7 2305.31356  984536.696 295819.9
#> 234  174869.8 1409.65625  936896.706 326380.3
#> 235  165963.7 2417.56264 1018833.121 302565.1
#> 236  174818.8 1418.64693  937232.084 326482.5
#> 237  168941.8 2636.35296 1038466.759 313504.0
#> 238  168876.2 2624.63930 1039044.061 312814.1
#> 239  171554.5 1365.27581  298941.152 340734.7
#> 240  135308.7  942.30591  -62653.455 235801.5
#> 241  135267.7  943.06057  -62546.118 235740.8
#> 242  135267.7  943.06057  -62546.118 235740.8
#> 243  135188.2  945.52334  -62171.838 235630.7
#> 244  135529.6  937.96437  -61983.503 236166.9
#> 245  135718.9  927.43049  -64441.640 236486.7
#> 246  135577.4  939.80745  -63051.507 236278.0
#> 247  173573.6 1539.90254  888069.790 330125.7
#> 248  135285.3  947.62116  -61536.002 235877.8
#> 249  173160.5 1548.92790  835460.410 331401.6
#> 250  170322.8 1541.79753  356558.727 343599.2
#> 251  136027.3  854.07154  -63770.409 237016.9
#> 252  135767.3  937.45132  -64683.768 236641.1
#> 253  135767.3  937.45132  -64683.768 236641.1
#> 254  173119.1 1558.47608  837937.338 331465.4
#> 255  136311.1  791.28476  -61128.526 237438.8
#> 256  135970.3  896.59581  -63329.877 236977.3
#> 257  135767.5  952.73950  -63021.779 236720.7
#> 258  173291.9 1570.52546  882933.116 330730.8
#> 259  134165.6 1748.12865  -33005.158 234525.6
#> 260  169417.5 1871.97771  449941.806 346376.7
#> 261  135858.3  973.83977  -60383.731 236977.2
#> 262  134180.8 1771.54154  -32389.190 234568.0
#> 263  134095.3 1806.46878  -29728.086 234467.9
#> 264  169593.0 1838.40626  344825.760 344129.0
#> 265  140380.1 1006.69967   13034.385 242636.1
#> 266  136061.7  961.78741  -59078.151 237310.0
#> 267  173069.0 1593.05654  872568.824 331274.6
#> 268  172720.2 1628.34443  836591.548 332252.2
#> 269  140082.2 1012.05210   -1312.869 242399.5
#> 270  135814.3  966.83421  -57746.827 237013.5
#> 271  139732.2 1015.91621  -22265.435 242097.0
#> 272  136043.5 1004.32248  -55828.370 237441.0
#> 273  134449.6 1830.23418  -33735.657 235018.9
#> 274  136969.8  787.24726  -54467.118 238497.4
#> 275  134477.6 1868.61966  -32229.239 235097.5
#> 276  141816.1 1055.01589   46065.451 244630.5
#> 277  139294.9 1031.79193  -60644.383 241747.0
#> 278  166039.7 2527.87498  891144.787 342468.8
#> 279  165504.9 2504.87533  911595.609 336104.5
#> 280  170682.1 1503.68509  636825.370 340391.3
#> 281  165577.4 2521.56989  869387.174 343757.8
#> 282  170704.3 1534.56268  682969.572 339609.6
#> 283  170704.3 1534.56268  682969.572 339609.6
#> 284  170525.1 1496.84136  630045.595 341393.4
#> 285  170295.2 1480.65975  574861.411 342269.1
#> 286  170295.2 1480.65975  574861.411 342269.1
#> 287  170587.1 1526.21749  669102.413 340560.0
#> 288  170191.9 1489.31812  569210.783 342638.0
#> 289  165185.0 2530.44646  847233.190 345650.6
#> 290  165185.0 2530.44646  847233.190 345650.6
#> 291  164925.9 2472.25050  888981.390 335331.0
#> 292  147600.8 1371.29603  334182.825 252737.0
#> 293  147600.8 1371.29603  334182.825 252737.0
#> 294  166474.9 2495.53085  435073.550 348794.5
#> 295  147078.8 1402.73518  341001.069 252375.3
#> 296  146739.5 1399.26260  350910.774 251967.2
#> 297  165925.1 2367.63491  445391.694 348388.7
#> 298  161515.0 1445.39286  784830.599 321281.6
#> 299  150219.4 1379.46329  578091.287 257472.1
#> 300  165946.3 2531.66096  443316.109 348661.0
#> 301  147115.9 1455.41549  376462.759 252532.7
#> 302  149811.0 1442.15520  553928.155 256923.4
#> 303  161427.8 1434.11253  761038.485 321449.8
#> 304  144474.9 1354.74737  121033.851 249334.8
#> 305  161491.1 1547.04466  768913.663 326155.0
#> 306  161491.1 1547.04466  768913.663 326155.0
#> 307  148660.1 1664.67071  502451.895 255246.4
#> 308  146668.5 1501.60075  406367.291 252254.4
#> 309  147250.0 1655.11218  452474.835 253191.2
#> 310  160153.4 1231.19275  649041.379 315365.8
#> 311  160042.8 1201.41236  656183.323 312548.3
#> 312  159184.6 1001.14699  654116.185 303303.0
#> 313  157629.0  946.85364  693262.250 287248.4
#> 314  157299.8  945.10514  701922.153 284747.7
#> 315  157406.7  946.32289  686776.682 286222.6

fitted(m)
#>   [1] 277562.9 274332.6 275273.1 303083.5 304129.8 283928.9 268348.8 335148.3
#>   [9] 281598.6 418258.1 345650.6 335161.7 422821.6 406933.1 362427.6 403471.2
#>  [17] 364156.1 389628.7 376227.8 412851.8 522093.4 423523.6 379836.4 467246.7
#>  [25] 410776.3 340195.6 343773.4 328846.5 501695.6 375368.0 292410.1 390762.3
#>  [33] 348752.8 306388.1 285643.0 350049.9 501191.2 326617.8 454548.4 524544.8
#>  [41] 395328.4 244900.0 237931.7 277090.8 272251.2 551285.9 235708.0 228197.7
#>  [49] 457946.4 263388.1 322201.5 248950.4 209400.7 219749.2 402783.0 446128.2
#>  [57] 362834.1 420250.3 453689.5 441842.5 525336.5 460721.0 412669.0 409906.4
#>  [65] 471733.8 445826.4 448809.7 457711.0 520710.4 396350.0 599627.8 548022.2
#>  [73] 508341.1 455553.7 407426.1 424926.7 422307.9 425119.0 438489.1 292043.8
#>  [81] 484824.4 270484.9 559417.4 293390.7 271309.0 367592.2 308705.7 306013.7
#>  [89] 283304.5 300110.8 285270.3 345505.2 270102.5 410665.8 330107.4 315729.6
#>  [97] 351780.9 375946.3 354111.4 394018.5 445154.8 385089.1 361998.9 528636.8
#> [105] 302040.8 405414.1 385852.4 469673.1 363947.7 340331.5 379624.9 349419.2
#> [113] 345813.5 449898.6 559229.2 519801.7 582039.5 615181.2 441402.8 430413.4
#> [121] 560518.5 470740.3 413211.8 462591.3 457413.8 402337.5 686824.3 648697.0
#> [129] 454941.0 542544.4 477301.4 477301.4 445523.9 575409.7 508778.2 642267.0
#> [137] 459221.8 483723.7 927409.8 503064.0 530172.1 680291.1 317092.7 326160.0
#> [145] 309392.8 369069.7 301489.5 300531.5 285228.7 272819.1 365588.5 382430.7
#> [153] 292687.6 317886.6 275353.8 279274.8 297768.2 470435.9 267786.5 318523.5
#> [161] 336763.6 305358.3 279107.3 444530.6 291053.1 350723.3 512700.2 299137.7
#> [169] 323844.8 292433.8 331684.1 534308.2 330825.9 469890.6 258214.5 467686.1
#> [177] 458108.8 420752.2 473160.5 411721.7 406638.8 721410.7 611242.3 576290.4
#> [185] 675685.2 671577.1 736239.1 587845.6 632494.6 299640.2 634026.2 833958.2
#> [193] 779294.8 576719.5 415074.8 419530.3 424636.5 494239.3 415945.4 488783.9
#> [201] 481983.3 365374.6 407068.9 294117.1 387608.8 307755.3 335700.3 299653.5
#> [209] 530364.4 731094.6 552451.7 257460.7 417259.6 560381.8 279004.3 599412.1
#> [217] 493791.1 570552.2 536542.0 406458.8 325025.1 512921.9 241281.5 417804.9
#> [225] 485404.6 565077.5 540924.8 421917.3 412618.2 598056.4 654543.2 546280.8
#> [233] 532499.6 522627.8 421673.1 678689.5 442169.0 615493.9 889792.9 497809.5
#> [241] 251810.0 245191.7 246134.8 221504.2 264089.6 268500.2 317802.2 468659.2
#> [249] 276507.9 545584.1 409988.9 285985.4 252313.0 304810.3 518631.4 314484.9
#> [257] 303007.2 263402.0 471919.6 361742.0 443329.3 289197.3 344230.2 355726.8
#> [265] 529292.5 347131.7 300143.8 607221.0 555844.7 423672.1 308055.1 326576.5
#> [273] 302213.3 376230.3 285530.0 396465.9 382140.4 367264.8 570328.8 558277.4
#> [281] 415723.7 970460.0 443869.3 428523.6 457414.1 395670.5 397151.2 383346.2
#> [289] 471838.4 600273.9 605334.8 499272.0 380362.6 361164.4 525476.2 377693.0
#> [297] 348074.7 560674.5 469454.1 372077.3 783806.5 415712.3 371076.2 481358.5
#> [305] 344377.9 502467.9 502467.9 392686.2 315369.4 365850.5 427819.6 400509.3
#> [313] 447059.2 447888.1 366299.1 544350.3

residuals(m)
#>   [1] -120562.87 -160832.60 -193523.06 -153083.54 -114129.83 -123978.85
#>   [7] -118353.77  -95198.28 -128598.59 -168308.08  -98650.64  -74161.74
#>  [13] -319821.57 -283433.09 -259427.55 -303471.22 -274206.10 -294628.66
#>  [19] -286727.76 -276851.84 -252093.44 -288523.58 -264836.41 -272246.71
#>  [25] -286776.32 -256195.62 -256773.43 -264896.46 -271695.63 -233367.96
#>  [31] -196410.07 -263762.26 -236752.80 -211388.13 -215642.95 -190049.87
#>  [37] -314691.17 -206617.83 -234548.43 -287044.82 -165328.43 -167899.97
#>  [43] -192931.75 -152090.79  -97251.18 -191285.86 -180208.04 -143197.66
#>  [49] -208946.36 -193438.11 -172251.53 -141950.36 -142900.70 -150249.21
#>  [55] -207782.96 -201128.24 -257834.07 -295250.29 -273739.47 -318842.46
#>  [61] -300336.51 -313720.98 -303669.02 -319956.38 -336733.84 -316826.36
#>  [67] -313809.72 -320711.04 -405710.43 -316399.96 -250627.84 -368022.19
#>  [73] -302341.13 -325554.69 -318426.06 -291926.75 -298807.93 -343118.99
#>  [79] -338489.13 -197543.80 -283824.40 -199484.86 -314417.38 -184890.71
#>  [85] -183358.99 -246092.15 -199705.66 -201018.73 -183354.52 -202110.79
#>  [91] -195270.30 -176505.19 -140107.47 -280665.81 -203107.43 -190729.60
#>  [97] -217780.88 -285946.33 -219611.37 -296518.51 -278654.84 -262089.14
#> [103] -264498.92 -255636.83 -218040.76 -253414.07 -305852.44 -234673.15
#> [109] -249447.71 -241381.45 -221624.87 -261419.19 -225813.55 -360398.56
#> [115] -379229.23 -404801.74 -437039.48 -365231.19 -326402.79 -343413.42
#> [121] -405518.51 -293740.27 -250211.78 -377591.29 -302413.85 -261337.51
#> [127] -348824.27 -378697.03 -346941.02 -276044.45 -332301.44 -332301.44
#> [133] -335523.86 -422909.68 -378778.16 -407266.99 -302721.76 -305223.75
#> [139] -407409.78 -331064.02 -320172.09 -490291.10 -217092.67 -212049.02
#> [145] -137392.81 -199069.73 -161489.53 -200536.55 -198228.72 -189819.11
#> [151] -203588.51 -239430.68 -205187.57 -227886.57 -161353.80 -171774.76
#> [157] -199768.17 -346435.88 -195286.47 -180023.48 -158263.64 -173358.26
#> [163] -209107.30 -341530.65 -187553.14 -152723.30 -402700.24 -170137.71
#> [169] -193849.75 -217433.79 -236689.10 -317308.19 -201825.92 -372890.63
#> [175] -193214.49 -357686.10 -278108.77 -248752.25 -178160.54 -126721.72
#> [181] -229138.82 -446410.70 -473742.27 -462290.45 -462435.17 -496577.11
#> [187] -516239.09 -430845.62 -459494.56 -114640.24 -444026.17 -408958.21
#> [193] -399294.84 -455719.49 -215074.78 -199530.31 -259636.48 -248739.29
#> [199] -300995.40 -333783.92 -344983.26 -312374.62 -305068.95 -202122.12
#> [205] -239108.83 -176755.28 -200700.30 -204653.47 -319364.37 -341094.63
#> [211] -317451.68 -183960.71 -319259.59 -282381.79 -191004.34 -329412.07
#> [217] -351791.12 -302552.21 -326542.03 -193458.79 -201025.11 -339421.94
#> [223] -196281.47 -334804.87 -326404.59 -270077.49 -414424.79 -281917.26
#> [229] -315118.19 -408106.41 -464543.20 -328280.79 -417499.62 -357627.82
#> [235] -287673.09 -398489.55 -310168.95 -425493.94 -389792.89 -317809.49
#> [241] -181814.96 -187441.72 -191134.78 -162004.22 -190589.63 -192500.20
#> [247] -227802.18 -363659.25 -170007.93 -307584.10 -305988.87 -175985.43
#> [253] -192813.04 -172310.31 -328631.40 -189484.87 -175007.19 -181401.96
#> [259] -339919.65 -301746.96 -325329.25 -171197.33 -249730.20 -276726.78
#> [265] -306792.54 -162131.72 -166893.83 -315221.01 -312844.67 -208672.09
#> [271] -181055.11 -178576.54 -166213.30 -241230.29 -160530.01 -272465.91
#> [277] -212640.44 -156764.78 -410328.77 -403277.37 -340723.66 -402959.98
#> [283] -323919.26 -309523.64 -317414.14 -295720.54 -298651.20 -302396.21
#> [289] -304838.39 -438273.95 -422334.84 -380272.04 -237362.56 -264214.42
#> [295] -390476.22 -220192.97 -240074.75 -445674.52 -365954.13 -236577.28
#> [301] -373806.48 -235712.30 -294076.16 -339108.51 -260377.87 -342467.92
#> [307] -342467.92 -279686.24 -247369.41 -281850.51 -277819.58 -290509.30
#> [313] -209559.17 -192888.14 -236299.06 -264350.32